Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression

نویسندگان

  • Rosanna E B Young
  • Saul Purton
چکیده

Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis

Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...

متن کامل

The necessity of transgenic technology in sustainable production

It has been more than half a century that plant geneticists and breeders have been trying to assemble a combinationof genes in crop plants, in order to make them as suitable and productive as possible. Plant transformation technology incrop plants was first undertakenin the 1980s based on the ability of foreign gene integration into host plant genome andregeneration of transformed plant cells i...

متن کامل

Introduction of Three Independent Selection Markers in Leishmania

The pLE2SCX vector was developed for the stable expression of exogenous genes in the protozoan parasite Leishmania. The pLE2SCX construct contains three independent selection markers: herpes simplex virus thymidine kinase (HSV-TK), cytosine deaminase (CD) and streptothericin acetyltransferase gene (sat) in multiple cloning site, flanking by 5’ and 3’ untranslated regions of the previously clone...

متن کامل

Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants

Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...

متن کامل

The codA gene as a negative selection marker in Citrus

The use of positive selectable marker genes is widespread in plant genetic transformation allowing transgenic cells to grow while repressing non-transgenic cells. Negative selectable markers, on the contrary, allow the repression or ablation of transgenic cells. The codA gene of Escherichia coli encodes cytosine deaminase that hydrolyzes 5-fluorocytosine (5-FC) into the cytotoxic compound 5 flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2014